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Comparison of nonlinear wave-resistance theories for 
a two-dimensional pressure distribution 
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The wave resistance of a two-dimensional pressure distribution which moves steadily 
over water of finite depth is computed with the aid of four approximate methods: 
(i) consistent small-amplitude perturbation expansion up to  third order; (ii) continuous 
mapping by Guilloton’s displacements; (iii) small-Froude-number Baba & Takekuma’s 
approximation; and (iv) Ursell’s theory of wave propagation as applied by Inui & 
Kajitani (1977). The results are compared, for three fixed Froude numbers, with the 
numerical computations of von Kerczek & Salvesen for a given smooth pressure patch. 
Nonlinear effects are quite large and it is found that (i) yields accurate results, that 
(ii) acts in the right direction, but quantitatively is not entirely satisfactory, that 
(iii) yields poor results and (iv) is quite accurate. The wave resistance is subsequently 
computed by (i)-(iv) for a broad range of Froude numbers. The perturbation theory is 
shown t o  break down at low Froude numbers for a blunter pressure profile. The Inui- 
Kajitani method is shown to be equivalent to a continuous mapping with a horizontal 
displacement roughly twice Guilloton’s. The free-surface nonlinear effect results in an 
apparent shift of the first-order resistance curve, i.e. in a systematic change of the 
effective Froude number. 

1. Introduction 
The present study is concerned with the computation of wave resistance of bodies 

moving steadily in an inviscid fluid. The linearized approximation (thin-ship theory) 
is known to yield results which are in poor agreement with the experimental wave drag 
for bodies of practical shape. The need for better prediction has motivated the 
development of nonlinear methods whose application has been made possible by the 
advent of electronic computers. Although numerical solution of exact nonlinear 
equations might become feasible in the not-too-distant future, the emphasis a t  present 
is put on approximate nonlinear methods which still require a certain, but lesser, 
amount of numerical effort (for a detailed review see Wehausen 1973; see also the 
recent survey by Tulin 1979). Furthermore, such approximate methods may help to 
elucidate the main nonlinear mechanism governing the phenomenon which might be 
obscured by numerical solutions. It is customary a t  the present stage to check the 
accuracy of approximate methods by comparing the computed wave resistance with 
the residual drag of one or more models towed in laboratory tanks. Although the 
ultimate goal of any theory is to predict measured values satisfactorily, we feel that 
the many approximations involved in the aforementioned procedure preclude a 
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thorough evaluation of computational methods, Indeed, the measurement of residual 
drag implies the separation of the total drag into its components and, in spite of the 
refinewents achieved in wave and wake surveys, there is still room for error and freedom 
of interpretation. Furthermore, it is known that viscous effects, which are disregarded 
in the theories we examine, can influence the wave drag. Finally, computation of wave 
resistance, even by approximate methods, involves elaborate computer programs 
which are difficult to check and may therefore contain additional errors. 

An alternative approach which complements experiments, is the comparison of 
results based on approximate methods with those derived by numerical solution of the 
nonlinear equations of inviscid flow in simple cases. Such a solution has been presented 
recently by Salvesen & von Kerczek ( I  977) who have evaluated the wave resistance 
of a two-dimensional pressure distribution travelling on a free surface. This is a case 
sufficiently simple to avoid involved numerical work, but realistic enough to be of 
interest in applications such as air-cushion vehicles. The aim of the present study was 
to compute the wave resistance of the pressure distribution investigated by Salvesen & 
von Kerczek by a few existing theories and to compare results. The methods selected 
for examination here are : (i) the consistent small-amplitude perturbation theory up to 
third order, with the linearized theory as the first-order approximation; (ii) Guilloton’s 
method in the interpretation of continuous mapping suggested by Noblesse & Dagan 
(1976); (iii) Baba & Takekuma’s (1975) approximation of small-Froude-number flow, 
based on Ogilvie’s (1968) work; and (iv) application of Ursell’s ( 1  960) theory of wave 
refraction to  the computation of the wave pattern and wave resistance, as suggested 
by Inui & Kajitani (1  977). 

Method (i) is the classical theory of Stokes waves which has been applied to two- 
dimensional flows past bodies in water of infinite depth by Tuck (1965) and Salvesen 
(1969). Method (ii) has been developed in an intuitive way by Guilloton (1964) and has 
been applied in a rational way to evaluating wave resistance by Gadd (1973), who 
claims improved agreement with experiments in a few cases. Finally, the more recent 
methods (iii) and (iv) have also been found by their proponents to predict measured 
wave resistance of a few ship models better than the linearized theory. 

Although the forementioned methods can be traced back in the references quoted 
above, a brief derivation ofeach of them is given in the sequel. This was found necessary 
because the case of a pressure acting on the free surface of a fluid of finite depth has not 
been considered explicitly in all cases, and also for the sake of completeness of the 
present study and for readers’ ease. 

2. Statement of the problem 
We consider a two-dimensional pressure patch acting on the free surface of water of 

depth d and travelling to the right with a velocity c. The problem is made steady by 
imposing an equal and opposite velocity on the free stream, as shown in figure 1. 
A reference frame is defined with the x axis in the direction of motion and y is measured 
vertically upwards from the undisturbed free surface. 

The usual assumptions that the fluid is incompressible, inviscid and lacks surface 
tension are made. The velocity may then be expressed as the sum of the uniform flow 
velocity - c and the perturbation velocity with components u, v given by 

u = $k, v = & >  (2.1) 
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FIGURE 1 .  Definition of the prdblem and the pressure distribution. 

where # is the perturbation potential which must satisfy the Laplace equation 

v2q5 = 0 (2.2) 

throughout the fluid region. In addition, as shown by Wehausen & Laitone (1960), for 
example, the dynamic condition 

c#z-4(4;+q5;)-g5 = P / P  on Y = 5, (2.3) 

4f/-(#,-45, = 0 on Y = 5 (2.4) 

and the kinematic condition 

must also be satisfied on the free surface, whose elevation is <(x). Here p ( x )  is the 
applied pressure, g is the acceleration of gravity and p is the water density. Eliminating 
5 from (2.3) and (2.4) yields 

(2.5) 

in which h = PIP9. (2.6) 

1 
# , + - [ V ( q 5 - ~ z ) ] . V [ ~ V ( # - ~ ~ ) ~ ~ ] + q 5 , h ,  = ch, on y = 5, 

29 

Equation (2.5) can be used in lieu of (2.41, whereas (2.3) may serve to determine 6. 
In water of finite depth, the bed condition is required, namely 

q5,= 0 on y = - d .  (2.7) 

Finally, one needs to impose the well-known radiation condition, that waves must 
appear downstream of the disturbance. 

In  the next section, we consider various approximate solutions to the set of equations 
(2.1) to (2.4). 

3. Derivation of approximate formulae 
3.1. Perturbation theory 

Chronologically, this was the earliest theory to be developed, and it has been applied by 
Salvesen & von Kerczek to the deep-water problem of a vortex (1976) and a pressure 
patch (1977). Here, the extension is made to the case of finite depth. It should be 
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pointed out that  the higher-order terms for a Stokes wave are well known. However, 
the case of a pressure distribution in finite-depth water has not yet been examined. 

We follow the procedure presented by Wehausen & Laitone for the solution of a free 
wave and expand the potential, the wave elevation, and the velocity in the following 
way : 

c = C O + C l + C 2 +  .... (3.3) 

I n  the series, each term is considered to be smaller than the preceding one by the small 
parameter t: = po/pgL,  where po is the nominal cushion pressure and L is the nominal 
length of the patch. An interesting feature of the perturbation scheme is that it provides 
both corrections to the flow ((3.1) and (3.2)) and a correction to the velocity (3.3)- 
implying that in general one cannot specify the speed explicitly. (It is remembered 
that the actual velocity of the disturbance is c, while cn is merely a computational 
artifact. ) 

These expressions are now substituted into ( 2 . 2 )  to (2.4) and terms of the same order 
of magnitude are collected. After some algebra, one obtains: 

v2q5i = 0 
for the continuity equation; 

(3.4) 

for the dynamic condition; and 

for the bed condition. 
q5. = O  on z = - d  w (3.7) 

These equations are the same as those in Wehausen & Laitone, except that two 
typographical errors in the signs in their equation (27.7)  have been corrected in 
( 3 . 6 ~ ) .  

The free-surface elevation ci may be eliminated from (3.3) and (3.6) to yield the 
combined free-surface condition 

where ko = g/ci is the fundamental wavenumber. 

solution: 
Thus, the higher-order solutions (i = 2,3 ,  . . .) resemble the well-known first-order 
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where 

and k, is the non-zero solution of 

Cj(z, k) + iXi(x, k) = /pi(s)  exp [ik(x - s)] ds,  (3.10) 

q ( k )  = k - k, tanh ( k d )  = 0 (3.11) 

r (k)  = p’(k) = 1 - k,d sech2 (kd). (3.12) 

When k,d < 1 (the supercritical condition), there is no non-zero solution of (3 .1f) ,  
and the second term in (3.9) is zero. For simpIicity, the 1 subscript in k, will now be 
dropped. 

Each of thepi induces a downstream wave of amplitude Ai and phase angle ai, which 
follow from (3.10).  The result is 

and 

(3.13) 
2ik 
Pgr 

Ai &i = -- [Ci(O, k) + i X i ( O ,  k)]. 

The first-order pressure is simply 
PI = P9 

and this yields a wave profile and potential far downstream of the form 

(3.14) 

and (3.16) 

The second-order pressure may be obtained by eliminating 5, from (3.5b) and (3.6b). 
It is necessary to put 

c, = 0 (3.17) 

in order to  prevent 5, from becoming unbounded downstream. The second-order 
pressure is then found to be 

(3.18) 

which yields a trailing wave profile of the form 

2 sinh (2kd) 
- cash (kd )  [2 cosh2 (kd )  + 13 cos [2(kx + a,)] 

4 sinh3 (kd)  
c2 = A ,  cos ( k ~  + 01,) + kA2, 

(3.19) 
and 

. .  
(3.20) 

Finally, the third-order pressure is found from ( 3 . 5 ~ )  and ( 3 . 6 ~ ) .  A bounded solution 
for #3 is obtained when 

] (3.21) 
1 - 9 + 8 sinh2 ( k d )  + 8 sinh4 ( k d )  ( 16 sinh4 (kd) 8 sinh2 (kd )  cosh2 (kd) ’ 

C, = c,,k2A? 

This expression differs from the usual one for the velocity correction for Stokes waves 
in water of finite depth. The difference is the inclusionhereof the second term in (3.21) 
which results from the mean depression of the trailing wave profile in (3.19). (The 
depth d is that  measured upstream.) 
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The results for the third-order pressure, and the downstream wave profile and 
potential are: 

3 + 4 sinh2 (kd)  -t- 2 sinh4 (kd)  
2 cosh ( k d )  sinh3 ( k d )  

cos (kx + a,) cos (kx + a,) 
+ k A I A z  ( 

3 + 6 sinh2 (kd )  + 2 sinh4 (kd )  
2 cosh ( k d )  sinh3 ( k d )  

- sin (kx + al) sin (kx + a,) 

64 sinha (kd )  

cos (kx + a,) ; I 3 + 15 sinh2 (kd )  + 12 sinh4 ( k d )  + 2 sinh6 (kd )  
16 sinh4 ( k d )  cosh2 (kd )  + 

(3.22) 

(3.23) 

(3.24) 

The wave resistance may be obtained in the usual way by means of a control surface 
surrounding the disturbance. The result for the resistance per unit width is 

the integration being performed a t  any station downstream of the pressure p .  It is 
thennecessary to substitute(3.15), (3.16), (3.19), (3.20), (3.23)and (3.24). Care must be 
taken to retain the required number of terms of each stage of the algebra, which is 
rather lengthy and prone to error. The contributions to the first three orders of 
resistance are found to be 

(3.25) 

(3.26) 

Because the pressures p 2  and p3 extend infinitely far downstream, it was found 

Here the integration is carried out numerically over the length of the (first-order) 
pressure distribution. For the purpose of calculating ci in this range, it is permissible 
to truncate the p, and p 3  distributions. 

1 
R, = *pgrA2,, 

R, = BpsrA,A, cos (a1 - a,), 
k2At 

l6r sinha (kd )  cosh2 (kd )  R3 = aW.( A: + 2A,A3 cos (a, - a3) + 
x [9 - 9kod + 18 sinh2 (kd )  + 39 sinh4 ( k d )  + 12 sinha (kd )  - 8 sinhs ( k d ) ] )  . 

easier to use the following formula instead: 

Ri = SpICizdx. 
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3.2. Continuous-mapping theory (Guilloton’s method) 
Guilloton’s method has been given a rational derivation with the aid of the general 
concept of continuous mapping by Noblesse & Dagan (1976). Since the presence of the 
pressure on the free-surface was not handled before and also for the sake of complete- 
ness the main points are given again here. 

The flow domain (for infinite depth) beneath y = cis continuously mapped onto the 
lower half-plane X, Y by 

x = X + f l ( X ,  Y ) ,  y = Y + y ( X ,  Y ) ,  (3.27) 

such that r(X70) = (3.28) 

and U ( X ,  Y )  = u(x,y), V ( X ,  Y )  = v(2,y). (3.29) 

Under these transformations the free-surface conditions (2.3) and (2.4) become 

cu-&(u2+v2)-ggr = gx on Y = 0 (3.30) 

and v ( l + f l x ) - ( u - c ) r x  = 0 on Y = 0, (3.31) 

where X ( X ,  0) = h ( 4  (3.32) 

is the ‘transformed pressure ’ in the reference domain and corresponds to the ‘linearized 
hull ’ in Guilloton’s terminology. The continuity and irrotationality conditions satisfied 
by u can be written down in terms of X and Y using (3.27) and chain differentiation. 
Subsequently, both velocity and mapping are expanded in small perturbation series 

u = ul+u,+ ...; v = Vl+V,+  ...; f l =  C1+f12+ ...; 71 = V I + V 2 +  .... (3.33) 

u1 = QlX, v1 = QIP, Qlxx+ Qlyp = 0 for Y 6 0, (3.34) 

and vl+cylx = 0 on Y = 0, (3.35) 

We substitute in (3.27) to (3.31) and the field equations, to obtain at  first order 

cu1-gy1 = gx on Y = 0, (3.36) 

which is identical to the first-order problem of the previous section (3.5), (3.6),  except 
for replacing h by x and c$l by Q,. 

Following Noblesse & Dagan (1976), the second-order velocity field is represented as 

u2 = -~ lClx -~ l~ lx+~zx7  (3.37) 

and v2 = - ~ 1 5 l P - - v l r l P + e 2 ~ ,  (3.38) 

such that u2 satisfies the irrotationality condition but not the continuity equation. 
The latter and free-surface condition (3.30), (3.31) yield for the pseudo-potential 8,: 

82xx+02yP = V2(!51u1+rlvl) for Y < 0, (3.39) 

and 02xx + ko& = u1(!51xx + kOClP) + Vl(T1XX + k 0 r l Y )  

+(fllx+ul/c) (ulx-k,vl) on Y = 0, (3.40) 

while 97, = c u 2 - ~ ( u ~ + v ~ )  on Y = 0. (3.41) 
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Up to this point, the mapping El, ql is arbitrary except for (3.28). Guilloton's mapping 
was shown to be the particular one which is harmonic and cancels identically the non- 
homogeneous term on the right-hand side of (3.40). I n  the absence of x the mapping 

(3.42) 
turns out to be 

Guilloton's approximation consists in neglecting also the right-hand side of (3.39), 
which becomes, for x = 0, 

(3.43) 

67 - @ l / C ,  ql" = CUl/S .  

1 
%xx + e,,, = - - (4 + v;)x,  

C 

SO that  8, = 0 and then the wave resistance a t  second order is expressed simply with 
the aid of the far free waves of the linearized first-order potential Ql. This recipe has 
to  be modified, however, when a pressure is present. In  line with Guilloton's mapping 
we select here 

(3.44) 
CD cu  

9 
6 -,p=-' q - 2 - x  1 -  1 c >  1 -  

such that (3.36) is satisfied and (3.44) degenerates into (3.42) for x = 0, but the 
extension of x beneath Y = 0 is left unspecified a t  present. Substituting (3.44) into 
(3.39) and (3.40) yields 

(3.45) 
1 

8,,, + Bzvv = - - (u; + v : ) ~  - V2(xvl) for Y G 0, 
C 

and 8,xx+ko8, ,  = -ko(ulXx+vlXY) for Y = 0. (3.46) 

It is seen that there is no way to extend x such as to  cancel both the last term of 
(3.45) and the right-hand side of (3.46) as in Guilloton's procedure. We have decided 
to  extend x such as to  satisfy the first requirement, i.e. 

Y x v 1 )  = 0, (3.47) 

which, together with (3.32), defines x uniquely by 

(3.48) 

and, after substituting in (3.40), gives 

In line with Guilloton's method we also neglect the remaining part of the right-hand 
side of (3.45) so that 0, is a harmonic function determined by (3.49). 

The wave resistance now is obtained with the aid of the free waves associated with 
the total potential CD, + O,, which is uniquely determined. 

Summarizing the preceding derivations, the computation of the wave resistance 
generated by a pressure patch h(z)  requires solving the linearized problem for the 
transformed distribution x(X), which is obtained from h(x) by the horizontal straining 
5, [(3.32) and (3.42)]. Since El depends on the solution, an iterative procedure which 
starts with 6, = 0, x = h as a first approximation is indicated, Subsequently, 8, is 
computed from (3.49) and the amplitude of the far free waves and the wave resistance 
associated with Ql + 0, are easily found as in ( 3 . 2 5 ~ ) .  
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I n  the case of water of finite depth the vertical mapping (3.44) will generally be 
different from zero on the line Y = - d in the reference domain, unless we supplement 
(3.47) with an additional condition for x on Y = -d .  Such a condition has not been 
considered here and we have disregarded the influence of bottom distortion when 
applying the method to finite depth. 

It should be mentioned that other mapping procedures, that is, methods for 
extending x below the free surface, are possible. I n  addition to the one given by (3.47) 
the following was also tested: 

As i t  turned out, the results were almost identical to those displayed in figure 3 (where 
(3.47) was satisfied). Thus, the details of the mapping procedure are unimportant -a t  
least for the range of data used here. 

v2x = 0. 

3.3. Small-Froude-number approximation (Baba & Takekuma’s approximation) 

A small-Froude-number approximation has been suggested for two-dimensional flows 
by Ogilvie (1968) and a succinct derivation for the three-dimensional case was given 
by Newman (1976). Following the last reference for the case a t  hand, the perturbation 
potential is represented as 

$ = $0 + $1, (3.50) 

where -cx+$,  is the zero-Froude-number solution, obtained from (2.1) to (2.4) by 
keeping c fixed while c2/g --f 0. Furthermore, i t  is assumed that $1 = O(c4/g2) while by 
differentiation am+n$l/axm ayn = O[(c2/g)2-m-*], an ordering which is suggested by the 
behaviour of the potential of the far free waves (3.16). I n  contrast, $o and its derivatives 
a t  any order are O( 1) .  Substituting (3.50) into (2.3) yields for the free-surface elevation 

c = 6 + c 1 9  

where 

and (3.51) 

Substituting (3.50) and (3.51) into (2.1),  (2.5) and (2.7) yields the following sequence 
of equations for $o and $1 a t  O( 1) and O(c2/g),  respectively: 

V2$, = 0, (3.52) 

do, + $ozh, = ch, on y = - h, (3.53) 

and $,,= 0 on y =  - d ;  (3.54) 

and 
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I n  (3.56) #o is evaluated on y = - h, whereas #1 is defined on y = co, and the last term 
originates from the corresponding Taylor expansion in the y direction. I n  the absence 
of a pressure on the free surface (h  = O),  (3.53) degenerates into the rigid-wall condition 
and (3.56) attains the simple form presented by Ogilvie (1968) and Newman (1976). 
Furthermore, they assume that at the same order it is permitted to transfer (3.56) from 
y = c0 to  y = - h (that is, y = 0 for zero pressure). Even for h = 0, (3.56) is still quite 
complicated and Baba & Takekuma (1975) have suggested a further simplification, 
namely to linearize (3.56) by replacing the left-handside by #lv + (c2 /g)  Hence, in 
Baba & Takekuma’s approximation, the nonlinearity of the free-surface condition is 
manifested in the presence of an effective pressure acting on y = 0, represented by the 
right-hand side of (3.56) for h = 0. 

I n  the present case we take advantage of the fact that, for the pressure patch under 
consideration (see §4) ,  h /L  -g 1 and h, -g 1.  We set #o = #ol+#02 with #ol = O(h), 
#02 = O(h2) and neglect terms of O(h3). Equation (3.53) now yields 

#oil/ = ch, on y = 0 (3.58) 

and #02Y = - (h#OIZ)X on Y = 0, (3.59) 

while #ol and #02 also satisfy (3.52) and (3.54). As for $1, (3.56) leads under Baba & 
Takekuma’s linearization and the above expansion of #o to the following free-surface 
condition for # = #ol + #02 + 

#rr+ko#?I = gH,/C on y = 0, (3.60) 

where (3.61) 

Thus we see that the boundary condition on the actual free surface has been shifted 
to  the line y = 0. This can be done if h is small compared to A ,  the wavelength of the 
free waves. Now 

and its maximum value of 0.013 occurs when h /L  = 0.02 and F = 0.5 (for the range 
of numerical values examined). Hence this approximation seems to be justified. Of 
course, it must be acknowledged that at lower Froude numbers, or higher pressures, 
this simplification would not be valid. 

Hence, with Baba & Takekuma’s approximation and the assumption of small h,, 
determining # has been reduced to solving the linearized free-surface problem (3.60) 
in which the effective pressure is expressed in terms of the actual pressure h and the 
small-Froude-number solution #ol (3.58) up to order h2. It is easy to ascertain that the 
same equation (3.60) could be obtained from the consistent perturbation expansion by 
summing up the first- and second-order equations in (3.8),  by replacing #1 and #lY by 
#ol and h,, respectively, and neglecting terms of order ( c4 /g2 )  or higher. I n  other words, 
(3.60) and (3.61) can be obtained by a double expansion process for small amplitude 
and small Froude number up to terms of order (h/L)2 and c2/gL in a manner considered 
in a previous paper for submerged bodies by Dagan (1972). The wave resistance can be 
obtained from the amplitude of the far free waves (3.15) in which p is replaced by pgH 
or by integration along c1 (3.51) as in (3.26). The problem is reduced, therefore, to 
solving first the Neumann problem for q501 (3.58) and subsequently the linearized wave 
problem for # ((3.60) and (3.61)). 



Nonlinear wave resistance 657 

3.4. Inui-Kajitani approximation based on Ursell’s theory 

Inui & Kajitani (1977) have applied Ursell’s theory of refraction of Kelvin waves 
generated by a pressure point which travels on a non-uniform current in the horizontal 
plane. It is assumed that the waves are of small amplitude and only the first-order 
term is retained, and that the current vertical velocity is negligible. Ursell’s theory is 
essentially a kinematical one in the sense that the refraction pattern is determined with 
the aid of the law of conservation of the wavenumber while the amplitude change is not 
considered. 

Inui & Kajitani (1977) assumed that, in the case of waves generated by a ship hull, 
the non-uniform current is represented by the velocity field of the double model (i.e. 
zero Froude number or, equivalently, rigid-wall free-surface condition) and, therefore, 
their method applies to moderate or small Froude numbers. Furthermore, it is assumed 
that the strength of the sources which generate the body shape in the rigid-wall 
approximation is the one appearing in the potential of the free waves, modified by a 
factor representing the refraction effect. I n  other words, the nonlinearity of the free- 
surface condition manifests itself in phase shifts of the wave system generated by 
the hull. 

I n  the present case of a two-dimensional flow, the theory is considerably simplified. 
The starting point is the representation of the potential of a free wave of unit amplitude 
in deep water as 

$UI = exp [k,(l$xI Y+i$Cr)l% (3.62) 

where $ is the phase function ($ = x for uniform current) and y = 0 represents the 
free surface in the absence of waves. The function $w satisfies the Laplace equation 
near y = 0 only approximately a t  the lowest order in the Froude number, i.e. a t  order 
(g/c2)2, while terms of order g/c2 and higher are neglected. The phase function $ is 
subsequently determined by substituting $w in the free-surface condition (3.56) which 
becomes, for flow under a rigid wall, i.e. for zero values of h, co and $o,y: 

~ $ , + ( 9 0 x - c ) 2 $ x 5  = 0 on Y = 09 (3.63) 

is the total disturbance potential. Hence, from (3.62) and (3.63) we where $ = $o + 
have, again, a t  the lowest order in (c2/g): 

Sl.x = W O J C  - (3.64) 

which expresses the phase function in terms of the zero-Froude-number solution. I n  
the present case (3.64) is valid strictly speaking behind the pressure patch, where the 
rigid-wall solution applies, but, forsmall h / L  = p/pgL, (3.64) is a good approximation 
even along the pressure distribution. The justification for this statement is essentially 
the same as that given in 9 3.3, where it was shown that the depression caused by the 
pressure is small compared to the wavelength. 

I n  line with Inui & Kajitani’s assumption, we now write the potential of the free 
waves generated by the pressure patch as a superposition of free waves of amplitude 
given by the linearized theory for uniform flow (see equation (3.15)), but with the 
phase of (3.64). Hence, the far free-surface profile is given by 

(3.65) 
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For x -+ -m, -+ 0 and C(x) degenerates into a simple harmonic wave so that the 
wave resistance can be computed as in § 3.1. 

Hence, computing the wave resistance first requires solving for the zero-Froude- 
number flow and deriving q50(x, 0) and subsequently computing A from (3.65) by two 
quadratures. The profile (3.65) can be regarded as a summation of elementary waves 
generated by pressure elements p ds whose phase is modified by the presence of the 
current of velocity - c .  Obviously, for uniform current (q50z = 0), (3.65) degenerates 
into the first-order perturbation solution. 
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For small h/L  and h,, as presumed here, we may write 

(3.66) 

where $ol satisfies (3.58). Hence, for large negative x, q501 -+ 0, and the phase function 
given by (3.64) becomes 

@(x-s) = x - s -  2 h ( s ,  0) (3.67) 
c 

Substitution of (3.67) into (3.65) yields the following result for the downstream complex 
wave amplitude: 

(3.68) A = - 2 A, exp { - iko[s + ( 2 / c )  #ol(s, 0)l) ds, 

from which the wave resistance can be obtained. 

by the change of variable, 
A point of considerable interest discovered during the computation process is that 

P = x + q501(x, 01, (3.69) 

equation (3.68) may be rewritten as 

A = - 2IA,exp (-ik, ,u)d,u, (3.70) 

which is exactly the amplitude related to a pressure distribution h(p)  on a uniform 
current in deep water. Hence, in this interpretation, the Inui-Kajitani method is 
equivalent to solving the linearized problem for a modified pressure patch which is 
obtained from the original one by a co-ordinate straining given by (3.69). But this is 
precisely the procedure arrived at  by the method of continuous mapping ( 5  3.2), so that 
there is no difference in principle between our interpretations of the Guilloton and 
Inui-Kajitani methods, except for the forms of the straining, (3.42) and (3.69). 

Although (3.70) has been derived for water of infinite depth, the extension to finite 
depth is straightforward. Thus, the potential $ol has to  satisfy the condition on the 
bottom (3.54), and (3.70) has to be replaced by 

(3.71) 

where k and r are given by (3.11) and (3.12), respectively 



Nonlinear wave resistance 659 

4. Numerical results 
4.1. Choice of pressure distribution 

Following von Kerczek & Salvesen (1977)) the pressure distribution used for the 
computations is defined as 

P ( 4  = Po 
T 

L 
for 1x1 < - - e ,  

2 

(4.1) 
L 

2e 2 
for - - e  < 1x1 < 

L 
2 

for 1x1 > -+e. = o  

The weight supported by the pressure, W = p o L ,  is independent of the smoothing 
parameter e. 

This distribution is shown in figure 1, where it may be seen that its first derivative 
dpldx  is continuous and that it is zero a t  the ends. The smoothing parameter represents 
the length over which the pressure falls to zero and the relatively large value selected by 
von Kerczek & Salvesen for computational convenience was e / L  = 0.25. 

4.2.  Comparison with numerical calculations 

In  figures 2, 3 and 4 a series of comparisons are made between the four theories 
described here and some numerical computations of von Kerczek & Salvesen (1977). 
In  their work, the Laplace equation was numerically solved in the flow region, and the 
position of the free surface was iterated until the dynamic condition was satisfied on it. 
The numerical procedures employed, in order to obtain the present results, are 
described in the appendix. 

Figure 2 shows the results of perturbation theory for the three different Froude 
numbers for which detailed numerical results were given by von Kerczek & Salvesen 
(1977). The ordinate, R/R,,, is the ratio of the resistance at  the specificd depth to the 
first-order resistance in deep water. The abscissa, ho/L, is the dimensionless pressure- 
to-length ratio, that is, p,/pgL. It is interesting to see how strong the nonlinear effects 
are in the case of finite depth - even for very low levels of the pressure. The linear result 
(ho/L = 0) would indicate that the depths considered are almost equivalent to deep 
water. However, the depth factor plays a greater role as the pressure increases. 

The second-order results (which appear as straight lines) are seen to be a great 
improvement on linear theory (which would be represented by a horizontal line at  the 
value RIR,, corresponding to ho/L = 0). The third-order results show almost perfect 
agreement for the range of pressures considered. Exceptions are the case of shallowest 
depth at  F = 0.357, and the case of deepest water at  F = 0.302. No explanation has 
been found for these two discrepancies. 

The third-order results include the influence of speed correction given by (3.21), 
which was found to change the value of RIR,, by up to 5 yo. In deep water, this effect 
was negligible for the pressures considered. Incidently, the deep-water perturbation 
calculations verify the results of von Kerczek & Salvesen -except for the third-order 
calculations at  F = 0-357. 

The rather good agreement between the theory and the numerical results can 
probably be explained by the relative fineness of the pressure patch (the large value of 
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FIGURE 2. Comparison of second-order (solid line) and third-order (dashed line) perturbation 
theory with numerical results of von Kerczek & Salvesen (1977), e / L  = 0.25. (a)  F -- 0.461, d / L  
values: A, 0.5714; 0, 0.7299; 0, 1.0; m. 00. ( 6 )  F = 0.357, d / L  values: A ,  0.429; 0, 0.5; 
0, 0.625; co, co. ( e )  F = 0.302, d / L  values: A ,  0.3012; 0, 0.3623; 0, 0.5; a, m. 

the smoothing parameter e = 0-25L, and the fact that dpldx is zero a t  the ends), which 
is not typical of air-cushion vehicles or ships. 

The continuous-mapping theory (Guilloton) is examined in figure 3. The calculation 
has been done both with and without the pressure correction term of (3.49). The 
influence of this additional term is quite small. It may be seen that this theory displays 
the correct nonlinear trend, but in all cases the predicted degree of the nonlinearity is 
not sufficiently high-particularly in the case of F = 0.357. 

The theory is better a t  the two other Froude numbers of 0.461 and 0.302, where, in 
deep water a t  least, the outcome is almost identical to that of second-order perturba- 
tion theory. 

Ideally, the continuous-mapping theory contains contributions from high-order 
terms, because of the implicit nature of the straining procedure. Nevertheless, the 
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FIGURE 3. Comparison of continuous mapping theory (Guilloton) with pressure correct,ion (solid 
line) and without (dashed line) with numerical results of von Kerczek & Salvesen (1977), 
e / L  = 0.25. (a)  F = 0.461, (6) F = 0.357, ( c )  F = 0.302. See figure 2 for symbols. 

resulting curves are almost straight lines because of the low pressure levels used here 
and the smoothness of the distribution. 

The two small-Froude-number theories are considered in figure 4. The approxi- 
mation related to  Baba & Takekuma's approach is seen to  yield rather poor predictions. 
The degree of the nonlinearity is far too low, and even has the wrong trend at  the 
intermediate Froude number of 0.357. As pointed out previously, the approximation 
may be obtained by replacing the first-order potential g1 by the zero-speed first-order 
potential gal, when computing the second-order pressure p 2 .  The loss of the waves and 
of the higher-order local terms from the first-order potential has a great influence on 
the results, and it may be concluded that this simplification is too great. 

On the other hand, the Inui-Kajitani application of Ursell's theory predicts almost 
the correct degree of nonlinearity (figure 4). I n  deep water the results are practically 
identical to  those of second-order perturbation theory. The principal difference 
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FIGURE 4. Comparison of Inui-Kajitani (solid line) and Baba & Takekuma (dashed line) small- 
Froude-number approximations with numerical results of von Kerczek & Salvesen ( 1977) ,  
e / L  = 0-25. (a )  F = 0-461, (b)  F = 0.357, ( e )  F = 0-302. See figure 2 for symbols. 

between the two theories considered in figure 4 is the method of handling the $xx term in 
the combined free-surface condition. Thus, in the Inui-Kajitani method, the waviness 
and higher-order local terms are neglected in the coefficient of r,hXz in (3.63) but not in 
q5xx itself. It therefore would appear reasonable to take the zero-Froude-number 
approximation of the coefficient a t  least for the range of Froude numbers and pressures 
examined. On the other hand, we have shown that the Ursell theory as applied by 
Inui-Kajitani can be interpreted, like Guilloton’s theory, as a continuous mapping 
which resultsin a straining of the pressure patch. Thus, from (3.27) and (3.42) we obtain 
for Guilloton’s straining, by inverting (3.271, X = x+ q51(x, O)/c, whereas (3.69) reads 
,u = x + ( 2 / c )  &,(x, 0). It is seen, therefore, that the main difference between the two 
mappings, a t  least a t  moderate and low Froude numbers, is that Inui-Kajitani strain- 
ing is twice Guilloton’s and this has a beneficial effect on the accuracy of the results. 
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FIGURE 5 .  Wave-resistance and Froude-number correction coefficients from perturbation theory, 
d j L  = 03. (a)  e j L  = 0.25, ( b )  e / L  = 0.125. 

4.3.  Discussion of higher-order perturbation theory 

I n  the previous section the comparison between the numerical solution and the various 
approximations has been made for the three Froude numbers selected by von Kerczek 
& Salvesen (1977) .  Here, and in the following sections, we investigate the variation of 
the wave resistance based on the approximate theories for 8 broad range of Froude 
numbers, by using the numerical procedures given in the appendix. 

The wave-resistance coefficients CRi and Froude-number correction coefficient CFi 
from perturbation theory are shown in figure 5, for two different degrees of pressure 
smoothing, e/L = 0.25 and e/L = 0.125, respectively. From these, the resistance may 
be computed in the following way: 

CR = c ~ , + ( h o / L ) C ~ 2 +  ( h o / L ) 2 c ~ 3 + . . . ,  (4.2) 

and F = Fa+ (ha/L)2CF2 + .. .. (4.3) 
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FIGURE 6. Influence of pressure smoothing on results of perturbation theory, 
d l L  = w and h,JL = 0.02. 

The resistance coefficient is defined as follows, 

R L  c 
R -  W'2h0' 

while the nominal Froude number is given by 

(4.4) 

Both parts of figure 5 show that the second- and third-order contributions are 
oscillatory and that they are in phase but of opposite signs. Hence, the nonlinearity 
is weakened by the third-order term. The Froude-number correction is very small for 
the deep-water case under consideration. Equation (4.3) predicts a correction of about 
0.0016 in the worst case when ho/L = 0.02. This correction does not occur a t  all in the 
development of three-dimensional higher-order theory because the wave pattern then 
dies out a t  infinity. 

A further point of interest is that the higher-order resistance coefficients (CR2 and 
C,,,) in figure 5 (b ) ,  unlike those of figure 5 (a) ,  have not begun to approach zero at the 
lowest Froude number considered. This feature implies that the theory would tend to 
break down a t  low speeds when the pressure distribution is sharper. This finding is in 
agreement with the analysis carried out by Dagan (1975) for a submerged body, which 
has shown that second-order nonlinear effects became relatively large a t  small Froude 
number, depending on the degree of bluntness of the leading edge. 

The perturbation theory is examined further in figure 6, in which the usual wave 
resistance coefficient up to first, second, and third order is represented as a function of 
Froude number for the same two degrees of smoothing. A pressure level of h,/L = 0-02, 
which is typical of air-cushion vehicles, has been used. In  the region, for which F > 0.4, 
there is little difference between the theories of different order, and the influence of 
pressure smoothing is small. 

However, for low Froude numbers, F < 0.27, the influence of smoothing is indeed 
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FIGURE 7.  The nonlinear correction to the wave resistance according to the 
different theories, e / L  = 0.25, h,/L = 0.02, d l L  = CCI. 

marked. The greater smoothing is sufficient to almost completely damp the waves. The 
smaller smoothing has little influence. 

The nonlinearity is very important for F < 0.4 and results essentially in a shift of 
the wave-resistance curves. The second-order curves display a shift of the humps and 
hollows to lower Froude numbers, while the third-order ones indicate the opposite 
effect and reapproach the first-order curves. It may be emphasized that the shifting 
here is purely a result of changing values of the coefficients of resistance in (4.2). The 
Froude-number shift described by (4.3) is negligible in this case. 

The breakdown of the theory a t  low Froude numbers, as evidenced by the negative 
resistance, is probably accompanied by wave breaking - a feature not modelled by 
the theory. 

An interesting aspect of the nonlinearity, is that it appears to be very large when 
seen in figures 2, 3 and 4, for fixed Froude numbers, but less so here in figure 6, for 
fixed pressure loads. This feature results from the shifting of the humps and hollows 
which possess large slopes. This point was illustrated by von Kerczek & Salvesen. 

Finally, one may observe that the second-order resistance becomes zero a t  those 
points where the first-order resistance is zero. This may be noted also from comparing 
(3.25 a) and (3.25 b), and this result represents a good check on the numerical procedure, 
since these equations were, in fact, not used for the calculation of the wave resistance 
itself. 

4.4. Comparison of the four different theories 

Finally, in figure 7, the nonlinear effect (that is, the difference between the resistance 
coefficient and the linear resistance coefficient) is plotted. The results of the four 
theories examined in the present study are presented for a dimensionless pressure of 
p,,/pgL = 0-02. From the previous numerical comparisons, it would seem reasonable 
to  assume that the third-order perturbation theory produces accurate results for the 
case a t  hand, and that it may be used for checking the other theories. 

At low Froude numbers (less than 0-27) the continuous-mapping (Guilloton) and 
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second-order theories are quite close to each other. I n  the intermediate range 
(0.27 < F < 0-35),  these two theories display the same phasing, but different magni- 
tudes. At higher speeds still, the phasing is quite different. 

For F < 0.27, the Guilloton theory essentially agrees with the third-order theory, 
but is a little out of phase in the intermediate range (0.27 < F < 0.35). However, its 
magnitude in the intermediate railc lz better than that given by the second-order 
theory. At higher Froude numbers, greater than 0.35, the Guilloton and third-order 
theories can predict nonlinear corrections of opposite sign. 

The Baba & Takekuma small-Broude-number theory is seen to  predict a correction 
which is generally an order of magnitude too small. However, the weak oscillations in 
this curve do seem to be approximately in phase with the other curves. It should be 
pointed out here that the poor outcome of this theory led to a mistrust of the computer 
program. Nevertheless, the same results were obtained after the theory was pro- 
grammed a second time, independently, by an assistant. 

Finally, the Inui-Kakitani theory is seen to be very close in magnitude to the 
second-order theory over almost the entire range. I n  addition, the phasing is almost 
identical, being different by no more than 0.01 on the Froude-number scale. 

5. Conclusions 
The starting point of the present study was the numerical computation of the 

nonlinear wave resistance of the pressure distribution by von Kerczek & Salvesen 
(1977). I n  spite of the low value of the considered pressure-head to length ratio and 
the excessive smoothing of the distribution shape, the effect of the free-surface non- 
linearity, for fixed Froude numbers and increasing pressure, is quite large. For instance, 
the ratio between the nonlinear and first-order wave resistance coefficients may reach 
the value of 0.2 in deep water for h,/L = 0.01 and F = 0.357 (a near-hump Froude 
number). Computation of wave resistance for a broad range of Froude numbers and 
fixed pressure shows that the free-surface nonlinearity manifests itself mainly in a 
shift of the first-order wave-resistance curve, i.e. in a systematic change of the effective 
Froude number. The Froude number shift is, for instance, of order 0.01 for F = 0.3 
(figure 6, h,/L = 0.02, e/L = 0.125), but this results in a relatively large change of the 
wave resistance a t  a given F because of the steep slope of the curve between a hollow 
and a hump (AC,/AF 40). This effect hasbeenobserved in previous studies (see, e.g., 
the survey of Tulin 1979) and it  has far-reaching implications in the search for approxi- 
mate theories and in applications. 

The second-order consistent small-perturbation theory is shown to yield quite 
accurate predictions of the wave resistance a t  the three moderate-to-large Froude 
numbers considered by von Kerczek & Salvesen. The third-order results are practically 
indistinguishable from the numerical ones in most cases. This good agreement should 
not be surprising in view of the fineness of the pressure distribution shape. The small- 
Froude-number non-uniformity, discussed previously by Salvesen ( 1969) and Dagan 
(1975),  does not show up because of the fast decay of the wave resistance for small F .  
Computations for a steeper pressure profile show, however, that the perturbation 
theory breaks down for small F and this agrees with the previous findings for sub- 
merged bodies by Dagan (1975). Speculating about application to ship wave resistance, 
it seems that higher-order perturbation theory may not be promising for displacement 
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ships which are not fine and which operate a t  relatively low F ,  the computational 
difficulties notwithstanding. I n  contrast, nonlinear effects are found to be small a t  high 
Froude numbers for large depth and there linear theory and small-perturbation 
expansions might be more useful. 

Guilloton’s method, in the interpretation of continuous mapping suggested by 
Noblesse & Dagan (1976), provides a nonlinear correction in the right direction, but of 
insufficient magnitude. It has the advantage of carrying out a change of the effective 
Froude number, thus avoiding the disastrous small-Froude-number non-uniformity 
mentioned above. I ts  partial success only, in quantitative terms, may be attributed to 
the neglect of the second-order terms in the field equations, which, by this indirect 
evidence, seem to be quite significant. 

The small-Froude-number approximation of the type proposed by Baba & 
Takekuma (1975) for ships appears to be inadequate for predicting nonlinear wave 
resistance of a pressure distribution. It is reminded that unlike the quasi-linear 
original version of the theory by Ogilvie (1968), in which the coefficients of the velocity 
derivatives in the free-surface condition are expressed with the aid of the rigid-wall 
solution, in Baba’s approximation the free-surface condition is linearized and the 
nonlinearity occurs in the presence of a non-homogeneous pressure term based on 
the rigid-wall solution. In  the case of a fine pressure patch shape this non-homogeneous 
term can be expanded to second order in the pressure amplitude and then this small- 
Froude-number approximation turns out to be a degenerate case of the consistent 
perturbation theory. Replacing the first-order velocity derivatives by those of the 
zero-Froude-number solution in the second-order pressure terms is, therefore, inappro- 
priate and leads to  a considerable deterioration of results. 

Finally, the application of Ursell’s theory, of propagation of waves generated by a 
pressure point on a non-uniform current to ship waves as suggested by Inui & Kajitani 
(1977), leads to an improved prediction of nonlinear effects when compared with 
numerical or second-order perturbation theory. Since the starting point of the method 
is the quasi-linear free-surface condition proposed by Ogilvie (1968), it is inferred that 
the small-Froude-number approximation of (and only of) the coefficients of the velocity 
derivatives in the free-surface condition is sound. It should be mentioned, however, 
that  Inui & Kajitani considerably simplify the theory, as compared with that of 
Ogilvie (1968) and Newman (1976), because they deal only with the propagation of the 
far free waves upon the slowly varying current represented by the rigid-wall solution, 
while the singularities which generate the waves are not modified by the free-surface 
presence. The present study casts additional light on the Ursell theory by showing that 
i t  can be equally interpreted, like Guilloton’s theory, as a continuous mapping. Then 
it is seen to  imply a horizontal straining of the pressure distribution by roughly twice 
the amount of Guilloton’s displacement. This difference, and its beneficial effect upon 
prediction, is attributed to the attempt of Inui & Kajitani’s method to satisfy, though 
only approximately, both free-surface and field equations at  higher order, whereas 
Guilloton’s straining is derived from the free-surface requirements solely. 

Concluding, it seems that the studies of nonlinear wave resistance carried out in the 
last few years, including the present one, show that nonlinear free-surface effects are 
significant and they can be tackled by approximate theories which are manageable by 
the present and the next generation of computers. I n  principle, it seems that the non- 
linearity of the free surface shows up as a phase-shift of the free waves by the velocity 
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FIGURE 8. The numerical scheme: (a )  use of overlapping triangles; 
( b )  straining in the continuous-mapping theory (Guilloton). 

field, rather than a change of their amplitude. Consequently, the modification of the 
wave resistance by nonlinear effects results from the interference of the far free waves 
(or, alternatively, their displacement along the body or the pressure patch), which in 
turn causes a shift of the resistance curve. 

The work described in this paper was carried out while the first author was on 
sabbatical leave from the University of New South Wales, Sydney, Australia, a t  the 
University of Tel-Aviv, Israel. The opportunity is taken here for expressing his deep 
appreciation to both these institutions for their support. 

Appendix. Numerical procedures 
(a)  Perturbation theory 

The potentials q5i induced by each of the pressure distributors pi given by (3.14), (3.18) 
and (3.22) were computed successively, starting from the first. For this purpose, the 
distribution was broken into a series of overlapping triangles as shown in figure 8 (a) .  
Thus, the pressure curve was modelled by a series of straight-line segments. For a 
typical triangle of strength pi, whose vertices are located a t  xl, x2 and x3, we may 
integrate (3.9) to give its contribution to the potential on the undisturbed free 
surface : 

where Z is given by - 
sin (kx) n cos (k, x) 
k2q(k) k2( 1 - k,d)  ) d k -  k2,r(k,) 

A second term has been added to the integral in (A 2 ) .  It has the property of removing 
the singularity in the integrand a t  k = 0 without affecting in (A 1). 

The range of the integral in (A 2 )  was broken a t  the point k = k*, a t  which 

tanh (k*d)  = 0.99999. 

The integral from 0 to k* was performed numerically, while that from k* to 00 was 
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carried out analytically. When the singularity occurred in the first integral, that is 
0 < k, < k", then the singular part was extracted from the numerical computation. 
The integration mesh was automatically refined until an absolute error of 0~00001 was 
achieved. The function (A 2) only has to be computed once for each Froude number, 
for a single set of (equally spaced) x values. 

was then calculated using (A 1). From this, <, and p2 
were found from ( 3 . 6 ~ )  and (3.18), respectively. For this purpose, derivatives of the 
potential are needed. Derivatives with respect to x were done numerically using 
standard difference formulae. Derivatives with respect to y on (A 1) are not possible in 
a direct way. Instead, q51g was found from (3.8), and the relation a2/ay2 = - a2/ax2from 
(3.4) was used to evaluate the second y derivative. 

The second-order and third-order potentials were found in a similar way using (A l ) ,  
(3.8) and (3.66), and then (3.22), ( A l ) ,  (3.8) and (3.6c), respectively. The wave- 
resistance contributions from each of the three orders were evaluated from (3.26). 

The pressure distributionsp,, and p3 (3.18) and (3.22) were truncated a t  a distance 
of one free wavelength beyond the pressure patchpl, while the mesh spacing used was 
0.01 875L. These parameters and the error parameters mentioned previously were 
found t o  result in a relative error in the resistance of less than 1 yo. 

The first-order potential 

(b) Continuous-mapping theory 

The numerical procedure for evaluating this theory was divided into two stages. The 
main stage is the strainirzg of the co-ordinate system given by (3.44), this being an 
implicit definition. 

The pressure patch was represented by a set of equally spaced triangles over the 
ends of the patch, where the pressure varies. In  the central region, where the pressure 
is constant, only two asymmetrical triangles were needed. This is illustrated in 
figure 8 ( b ) .  The iteration procedure started with the evaluation of the potential @, 
using (A l ) ,  and then the straining tl, from (3.44). The x co-ordinate was then stretched 
using (3.27), and the straining evaluated again. For this iteration and later ones, all the 
pressure triangles will be asymmetrical, but (A 1)  is quite general. However, to save 
computing time, the function (A2)  was evaluated only once, and parabolic inter- 
polation was used to obtain values of 2, a t  arbitrary points. 

The iteration procedure was repeated until the straining no longer changed, and the 
downstream wave amplitude was calculated from (3.13). 

As explained in 9 3.2, the present problem requires the evaluation of an additional 
second-order downstream wave from (3.49), which does not occur in the usual ship 
problem. The effect may be represented by a pressure gradient given by 

The downstream wave may now be found from (3.13) and (3.10). The integration 
in (3.10) is done before that in (A 3).  The effect of finite depth on the integral may be 
accounted for in the usual way by including reflexions spaced 2d apart in the y 
direction. After some algebra, the following result may be obtained, 
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This wave was added to that induced by the strained first-order pressure. The wave 
resistance was then calculated from (3 .25) .  

In  the numerical work a spacing in the argument of the Z function was chosen to be 
O.OlL, and the iteration procedure was stopped when the largest strain change was 
less than 0.00001L. The method usually converged after 3 or 4 steps. (The straining 
for one nominal pressure p o / p g L  was used as the starting point for the next one, which 
was typically chosen to increase in steps of 0.005.) The resulting absolute error in the 
resistance coefficient was about 0.001. 

( c )  Small-Froude-number approximation (Baba & Takekuma approximation) 

The resistance in this theory was evaluated through the downstream waves from (3.13) 
and (3 .10)  using the equivalent pressure distributionin (3 .61) .  Each term in (3 .61)  is a 
trivial function of the pressure distribution ( 4 .  I ) ,  with the exceptionof the function #olx. 

Since $olx is an analytic function within the fluid, it  may be expressed in terms of 
q501v around the border, using (3 .58) .  If one includes the effect of the bottom by means 
of reflexions, the result is 

The integration may be performed analytically to give 

where 

and 

The special function f is one of the two auxiliary functions for the cosine and sine 
integral defined by Abramowitz & Stegun (1965, p. 232): 

sin ( t )  
f@)} - - 1; c;; dt. (A 9 )  g ( 4  

These functions may be expressed as follows : 

(A 10) 

where I @ )  = ezE,(z) .  (A111 

i 
2 f(2) = - [I(iz)  - I (  - iz)], g(z)  = &[I(iz)  + I (  - i z ) ] ,  

Here El is the exponential integral defined by Abramowitz & Stegun (1965, p. 230). 
Thef and g functions were computed from (A l o )  using a numerical approximation for 
I ( z )  given by Hess & Smith (1967).  
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Examination of (3.61) and (A 6) shows that the equivalent pressure can be decom- 
posed into terms independent of p ,  and c (except for simple multiplying factors), so 
that the computer program can be made very efficient. The infinite sum in (A 6) was 
truncated a t  n = & 32, and the distribution (3.61) which theoretically extends to 
infinity was cut off at  x = f L. The pressure was then represented by 80 equally spaced 
overlapping triangles, as in the other methods. The resulting error in the wave 
resistance coefficient was about 0.5 yo. 

( d )  Inui-Kajitani approximation 

The resistance was computed by means of the downstream wave amplitude using 
(3.25a), (3.13) and (3.10), on the basis of a strained pressure distribution, defined by 
(3.72). The straining function is seen to be essentially the integral of (A 6) with respect 
to x .  That is: 

in which G ( z )  = g ( z )  +In (21, (A 13) 

and the arguments of the functions are given by (A 7 ) .  
The straining (A 12) need only be computed once for a set of values of p ,  and c .  The 

overlapping triangles used to model the pressure were distorted along with the 
straining, as in figure 8 ( b ) .  A choice of 40 such triangles at  each end of the distribution 
was made (because the pressure is constant in the middle portion, only two were used 
there). The infinite sum in (A 12) was truncated a t  n = & 32. This resulted in a relative 
error of about 0.1 yo. 
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